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The year is 2073. You have a job working for General Electric, 
designing fuel cells. Martian have landed. One stands over your 
desk, demanding to see what you are working on. On the large 
CAD display surface forming your desk, you are sketching a com-
plex combustion chamber for a new eco-engine you and some col-
leagues are designing. Next to an input port, on the left side, is 
the word ‘oxygen,’ with an arrow pointing inwards. On the right 
is a similar port, with the word ‘hydrogen.’ “Amazing!,” says the 
Martian to a conspecific, later that day. “Earthlings build symbol 
combustion machines! I saw some engineers designing one. They 
showed me how the word ‘oxygen’ would be combined with the 
word ‘hydrogen’ in a wondrous kind of symbol mixing chamber.” 

The Martian is confused. That was a diagram for a fuel cell, 
not a fuel cell itself. The word ‘oxygen’ was a label. Map is not ter-
ritory. What will be funneled into the input chamber—to bela-
bour the obvious—is oxygen gas, not (a token of) the word ‘oxy-
gen.’ Words entering chambers makes no sense. 

Far-fetched? Perhaps. But in this paper I argue that the debate 
that has been conducted, over the last decade or so, between sym-
bolists and connectionists founders over a troublingly similar er-
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ror. Perhaps not quite as egregious—but a misunderstanding, 
nonetheless. Moreover, the confusion goes far beyond that par-
ticular debate, infecting (mis)understandings of the computa-
tional theory of mind throughout philosophy—including, to take 
just one example, the debate about Searle’s notorious Chinese 
Room. It is as if John Searle had wandered into a hacker’s office, 
looked over her shoulder at the program she was writing, seen 
lots of symbols arranged on the screen, and concluded that the re-
sulting system must be symbolic. Searle’s inference, I claim, is no 
more valid than the Martian’s. 

For discussion, I will focus on the connectionist debate, but 
the points can easily be extended to other contexts. 

 1 Background 
A glimmer of trouble is evident in the way the connectionist de-
bate is framed. Both positions consider only two kinds of archi-
tecture. On one side are traditional von Neumann architectures, 
of the sort imagined in “good old fashioned ai” (‘GOFAI,’ to use 
Haugeland’s term). These systems are assumed to be constructed 
out of a set of atomic symbols, combined in countless ways by 
rules of composition, in the way that is paradigmatically exempli-
fied by the axioms of a first-order theorem prover. On the other 
side are connectionist (or dynamic) systems, composed instead of 
a web of interconnected nodes, each dynamically assigned a nu-
merical weight. For purposes of this debate, it seems as if that is 
all there is. Some writers1 even take the first, symbolic, model, to 
be synonymous with computation tout court. So they frame the 
argument this way: that cognition is (should be understood as, 
will best succumb to analysis as, etc.) a dynamical system, not a 
computational system. 

What happens to real-world programming in this scheme—
the uncountably many network routers and video games and disk 
compression schemes and e-mail programs and operating systems 
and so on and so forth, that are the stock and trade of practicing 
programmers? Which side of the debate are they on? Most peo-

                                                             
1E.g. Port, Robert and van Gelder, Timothy (eds.), Mind as Motion, Cam-
bridge, Mass.: MIT Press (1995), or van Gelder, Timothy "Computation 
and Dynamics," Journal of Philosophy, … 
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ple, I take it, assume that they fall on the symbolic side. But is 
that so? And if so, why are such systems never mentioned? 

It cannot be that they are not mentioned because such pro-
grams are rare. In National Public Radio’s famous phrase, “let’s 
do the numbers.”2 Sure enough, some combinatorial symbolic 
systems have been constructed, over the years, of just the sort en-
visaged (and defended) by Fodor, Pylyshyn, and others on the 
symbolic side of the debate.3 Logic-based programs, theorem 
provers, and knowledge representation systems were early exam-
ples. SOAR4 is a more modern instance, as is the CYC project of Le-
nat and Feigenbaum. Perhaps the category should even be taken 
to include the bulk of expert systems, case-based reasoners, truth-
maintenance systems, and diagnosis programs. What does this 
come to, overall? Perhaps somewhere between 1,000 and 10,000 
programs? Suppose each comprises an average of 10,000 lines of 
code (a couple of hundred pages, in normal formatting). That 
would come to ten million lines of code, overall. 

But now consider the bulk of real-world programming. Think 
of e-mail clients, of network routers, of word processors and 
spreadsheets and calendar programs, of operating systems and 
just-in-time compilers, of Java applets and network agents, of 
embedded programs that run the brakes in our cars, control traf-
fic lights, and hand your cellular telephone call from one zone to 
the next, invisibly, as you drive down the interstate. Think, that 
is, of commercial software. Such programs constitute far and 
away the mainstay of computing. Again, it is impossible to make 
even much of a rough estimate, but it will not be too misleading if 
we assume that there are probably something on the order of 
1011—i.e., one hundred billion—lines of C++ code in the world.5 

                                                             
2«Ref ‘Marketplace’» 
3See for example Pinker, Steve, and Mehler, Jacques (eds.), Connections 
and Symbols, Cambridge, Mass.: MIT Press, 1988. 

4‘«ref» 
5It is not even clear how one would individuate programs—or, for that 
matters, lines of code. When does one line turn into another one? How 
long does a line have to exist (e.g., in a rough-draft of a program, in a 
throw-away implementation) in order to count? What about multiple 
copies? Moreover, since C++ is already passé, what about Java? Or the lan-
guage that will be invented after that? 

I have no clue as to how to answer such questions. Maybe this is a bet-
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And we are barely started. 
In sum: symbolic AI systems constitute approximately 0.01% of 

written software.  

By themselves, the numbers do not matter. What I want to do is 
to use these facts to support the following claims:  

1. Within the overall space of possible computational archi-
tectures, the vast majority of commercial software—which 
is to say, the vast majority of software, period—is neither 
“symbolic,” in the sense defended by Fodor and Pylyshyn, 
nor “connectionist,” in the sense defended by Smolensky, 
nor “dynamic,” in the sense advocated by van Gelder, but 
rather some fourth kind entirely; 

2. The only reason for thinking that commercial software is 
symbolic, as we will see, stems from a confusion between a 
program and the process or computation that it specifies 
(something of a use/mention error, not unlike that made 
by the Martian); and 

3. In order to understand how such a confusion could be so 
endemic in the literature (and have remain so unre-
marked), one needs to understand that the word “seman-
tics” is used differently in computer science from how it is 
used in logic, philosophy, and cognitive science—a re-
quirement that in turn will require us to understand some-
thing about the history of the technical vocabulary used in 
computer science. 

In a sense, the ultimate moral comes to this: the “design space” of 
possible representational/computational systems is enormous—
far larger than non-computer-scientists may realize. Both the 
traditional “symbolic” variety of system, as imagined in GOFAI, 
and the currently-popular connectionist and dynamic ar-
chitectures, are just two tiny regions, of almost vanishingly small 
total extent, within this vast space. 

Within the hugely important project of exploring how human 

                                                                                                                                                  
ter estimate: 109±(3±2). Whatever; the answers do not matter to any of the 
points being made in the text. 
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cognition works, it may be important, or anyway of moderate in-
terest, to ask whether and how much human cognition fits within 
these regions—to what extent, in what circumstances, with re-
spect to what sorts of capacities, etc. But to assume that the two 
represent the entire space, or even a very large fraction of the 
space—even to assume that they are especially important anchor 
points in terms of which to dimension the space—is a mistake. 
Our imaginations need to run much freer than that. 

And commercial software shows us the way. 

 2 Compositionality 
What it is that defines the symbolic model is itself a matter of de-
bate. But as Fodor and Pylyshyn make clear, there are several 
strands to the basic picture: 

1. It is assumed that there exist a relatively small (perhaps fi-
nite) stock of basic representational ingredients: something 
like words, atoms, or other entities we can call simplexes. 

2. There are grammatical formation rules, specifying how 
two or more representational structures can be put to-
gether to make complexes.6 

3. It is assumed that the simplexes have some meaning or 
semantic content: something in the world that they 
mean, denote, represent, or signify. 

4. Finally—and crucially—the meanings of the complexes 
are assumed to be built up, in a systematic way, from the 
meanings of the constituents. 

The picture is thus somewhat algebraic or molecular: you have a 
stock of ingredients of various basic types, which can be put to-
gether in an almost limitless variety of ways, in order to mean or 

                                                             
6Words of English—or anyway their morphological stems—are good ex-
amples of simplexes; and sentences and other complex phrases of natural 
language are good examples of complexes. But words have various addi-
tional properties—such as having spellings, being formulable in a consen-
sual medium between and among people so as to serve as vehicles for 
communication, etc.—that are not taken to be essential to the symbolic 
paradigm. 
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represent whatever you please. This “compositional” structure7 
underwrites two properties that Fodor identifies as critical as-
pects of human thinking: productivity (the fact that we can pro-
duce and understand an enormous variety of sentences, including 
examples that have never before occurred) and systematicity (the 
fact that the meaning of large complexes is systematically related 
to the meanings of their parts). Much the same structure is taken 
by such writers as Evans and Cussins8 to underlie what is called 
conceptual representation. The basic idea is that your concepts 
come in a variety of kinds: some for individual objects, some for 
properties or types, some for collections, etc.; and that they, too, 
can similarly be rearranged and composed essentially at will. So a 
representation with the content P(x) is said to be conceptual, for 
agent A, just in case: for every other object x’, x’’, etc. that A can 
represent, A can also represent P(x’), P(x’’), etc., and for every 
other property P’, P’’, etc. that A can represent, A can also repre-
sent P’(x), P’’(x), etc.9 

Thus suppose we can say (or entertain the thought) that a ta-
ble is 29” high, and that a book is stolen. So too, it is claimed—
given that thought at this level is conceptual—we can also say (or 
entertain the thought that) the table is stolen and the book is 29” 
high (even if the latter does not make a whole lot of sense). This 
condition, called the “Generality Condition” by Evans, is taken to 
underwrite the productive power of natural language and rational 
thought. It is also clearly a property taken to hold of the paradig-

                                                             
7Compositionality is a complex notion, but is typically understood to con-
sist of two aspects: first, a syntactic or structural aspect, consisting of a 
form of "composition" whereby representational symbols or vehicles are 
put together in a systematic way (according to what are often known as 
formation rules), and a semantic aspect, whereby the meaning or interpre-
tation or content of the resulting complex is systematically formed out of 
the meanings or interpretations or contents of its constituents, in system-
atic way (in a way, furthermore, associated with the particular formation 
rule the complex instantiates). 

8Evans, Gareth, Varieties of Reference, Oxford: Clarendon Press (1982); 
Cussins, Adrian, "On the Connectionist Construction of Concepts," in 
Boden, Margaret. (ed.), The Philosophy of Artificial Intelligence, New York: 
Oxford University Press (1990). 

9Evans says ‘entertain the judgment’ that a is F, that b is G, etc., rather than 
‘represent’; I use the representational phrasing here since the subject mat-
ter is symbolic computation. 
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matic instances of “symbolic” AI—i.e., of logical axiomatisations, 
knowledge representation systems, and the like. Whether being 
compositional and productive is considered to be a feature, as 
Fodor suggests, or a non-feature, as various defenders of non-
conceptual content suggest—i.e., whether it is viewed positively 
or negatively—there is widespread agreement that it is an impor-
tant property of some representation schemes, and paradigmati-
cally exemplified by ordinary logic. Indeed, the converse, while 
too strong, is not far from the truth: some people believe that 
connectionist, “subsymbolic,” “non-symbolic” and other forms of 
dynamical system are recommended exactly in virtue of being 
non-compositional or non-conceptual. 

 3 Programs 
What about those billions of lines of C++ code? Are they concep-
tual, in this compositional sense? 

We need a distinction. Sure enough, the programming lan-
guage C++ is a perfect example of a symbolic system. An indefinite 
stock of atomic symbols is made available, called identifiers, some 
of which are primitive, others of which can be defined. There are 
(rather complex) syntactic formation rules, which show how to 
make complex structures, such as conditionals, assignment state-
ments, procedure definitions, etc., out of simpler ones. Any ar-
rangement of identifiers and keywords that matches the forma-
tion rules is considered to be a well-formed C++ program—and 
will thus, one can presume, be compiled and run. By far the ma-
jority of the resulting programs will do nothing of interest, of 
course—just as by far the majority of syntactically legal arrange-
ments of English words make no sense. But it is important that 
these possible combinations are all legal. That is exactly what 
makes programming languages so powerful. 

But—and this matters—it does not follow that most commer-
cial software is symbolic. For consider the language used in that 
last paragraph. What is compositional—and hence is symbolic—
is the programming language, taken as a whole, not any specific pro-
gram that one writes in that language. It follows that the activity of 
programming is a symbolic process—i.e., the activity engaged in 
by people, for which they are often well paid. That may be an im-
portant fact, for a variety of reasons: it might be usable as an early 
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indicator of what children will grow up to be good programmers, 
or represent an insight into or limitation on how we construct 
computers. But it is irrelevant to the computational theory of 
mind, since it is not programming that mentation is supposed to 
be like, according cognitivism’s fundamental thesis.10 Rather, the 
claim of the computational theory of mind is that thought or 
cognition or mentation is like (or even: is) the running of a (single) 
program. 

Thus if you write a network control program, and I write a 
hyperbolic browser, and a friend writes a just-in-time compiler, 
all in C++, each of us uses the compositional power of the C++ pro-
gramming language to specify a particular computational program 
or process or architecture. There is no reason to suppose—good 
reason not to suppose, in fact—that those programs, those result-
ing specific, concrete active loci of behavior, will retain the composi-
tional power of the language we used to specify them. To think so is, 
like the Martian, to make something of a use/mention mistake. 

To make this precise, we need to be more careful with our lan-
guage. As is entirely standard, I will call C++ and its ilk (Fortran, 
Basic, Java, JavaScript, etc.) programming languages. As stated 
above, I admit that programming languages are compositional 
representational systems—and hence symbolic. They are used, by 
people, to specify or construct individual programs. Programs are 
static, or at least passive, roughly textual, entities, of the sort that 
you read, edit, print out, etc.—i.e., of the sort that exists in your 
EMACS buffer.11 

What programs are for is to produce behavior. That is why we 
write them. Behavior is derived from programs by executing or 
running them. Programs can be executed directly in one of two 
ways: (i) they can be executed by the underlying hardware of the 

                                                             
10It is by no means clear that programming is a computational activity. 
Chances are, programming will turn out to be to be computational if and 
only if cognitivism is true. 

11Technically, a distinction needs to be made between the program at the 
level of abstraction (and internal implementation) that a compiler can 
see—the one that gets "written" on a computer's hard disk, etc.—and the 
strictly “print representation” in ASCII letters, that people can read. For 
purposes of this paper, however, this distinction, too, does not matter. As 
is common parlance, therefore, I will refer to both, interchangeable, as “the 
program.” 
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machine, if they are written in the lowest level language (called 
‘machine language’), in which case the term ‘execution’ is the most 
common one used; or (ii) they can be executed by another com-
putational process, which itself results (directly or indirectly) 
form the execution of a machine language program, in which case 
the execution of the (higher-level) program is typically called in-
terpretation, and the process that does the execution, the inter-
preter.12 Of the two, the notion of interpretation is more general; 
and since most machines, these days, are micro-coded, even (so-
called’ machine language programs are typically interpreted, but a 
process resulting from a still-further lower level program, written 
in what is called ‘microcode,’ which in turn is directly executed by 
the microcode hardware. 

Commonly, however, programs are not directly executed. In-
stead, they are first translated, by a process called compilation, 
into another language more appropriate for direct execution by a 
machine. That is, if program P1 is written in C++, instead of being 
run or executed directly, by a C++ interpreter, it will instead be 
translated into another program P2, perhaps in machine language, 
such that the execution of P2 results in the “same” behaviour as 
would have resulted by the direct execution of P1 by a C++ inter-
preter. 

However it comes into existence, the ultimately resulting be-
havior—the whole point of the exercise—is what I will call a 
process. When (in the computer scientist’s sense of that term) a 
program is interpreted, therefore, to put this all simply, what re-
sults is behavior or a process. But when a program is compiled, what 
results is not behavior, but another program, in a different lan-
guage (typically: machine language). When that machine lan-
guage program is executed, however, once again a process (or be-
havior) will result. 

For our purposes, having to do with what is and is not sym-
bolic, what matters is that once a program is created, its structure 
is fixed. Except in esoteric cases of reflective and self-modifying 
behavior—which is to say, except in a vanishingly small fraction 
of those 1011 lines of code—the entire productive, systematic, 
compositional power of the programming language is set aside 

                                                             
12Why this is called interpretation will be discussed in the next section. 
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when the program is complete. The process that results from 
running that program is...well, whatever the program specifies. 
But, at least to a first order of approximation, the compositional 
power of the programming language is as irrelevant to the result-
ing process as the compositional and productive power of a com-
puter-aided design system (CAD) is irrelevant to the thereby-
specified fuel cell. 

Consider an example. Suppose we are writing a driver for a print 
server, and need to represent the information as to whether the 
printer we are currently servicing is powered up. It would be or-
dinary programming practice to define a variable called current-
printer11 to represent whatever printer is currently being serv-
iced, and a predicate called PoweredUp? to be the Boolean test. 
This would support the following sort of code:13 
 if PoweredUp?(current-printer) 
 then … print out the file … 
 else TellUser (“Printer not powered on. Sorry.”) 

But now consider what happens when this program is compiled. 
Since the question of whether or not a printer is powered up is a 
Boolean matter, the compiler is free to allocate a single bit in the 
machine (per printer) to represent it. That will work so long as 
the hardware is arranged to ensure that whenever the printer is 
powered up, the bit is set (say) to ‘1’; otherwise, it should be set to 
‘0’. Instances of calls to PoweredUp? can then be translated into sim-
ple and direct accesses of that single bit. In the code fragment 
above, for example, if that bit is 1, the file will be printed; if it is a 
0, the user will be given an error message. And so all the compiler 
needs to produce is a machine whose behavior is functionally de-
pendent on the state of that bit in some way or other.  

This is all straightforward—even elementary. But think of its 
significance. In particular Consider Evans’ Generality Condition, 
described above. In order for a system to be compositional in the 
requisite way, what was required, was the following: that the sys-
tem be able to “entertain” a thought—construct a representation, 
say—whose content is that any property it knows about hold of 
any object it knows about. Suppose, for argument, that we say 

                                                             
13By design, this code fragment is ridiculously skeletal. 
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that the print driver “knows about” the current printer, and also 
“knows about” the user—the person who has requested the print 
job, to whom the potential error message will be directed. Sup-
pose, further, that we say that the driver, as written, can “enter-
tain the thought” that the printer is powered up. Does that imply 
that it can entertain a thought (or construct a representation) 
whose content is that the user is powered up? 

Of course not. In fact the print driver process cannot entertain 
a single “thought” that does not occur in the program. That 
shows that it is not really “entertaining” the thought at all. For the 
issue of whether the printer is powered up is not a proposition 
that can figure, arbitrarily, in the print driver’s deliberations. In a 
sense, the print driver doesn’t “deliberate” at all. It is a machine, 
designed for a single purpose. And that is why the representation 
of whether a given printer is powered up can be reduced to a sin-
gle bit. It can be reduced to a single bit because the program has 
absolutely no flexibility in using it. Sure, given that C++ is incon-
testably symbolic, productive, and so forth, the original pro-
grammer could have written any of an unlimited set of other pro-
grams, rather than the program they wrote. But given that they 
wrote the particular one that they did, that extrinsic flexibility is es-
sentially irrelevant. 

From one point if view, in fact, that is exactly why we compile 
programs: to get rid of the overhead that is required in the origi-
nal programming language to keep open (for the programmer) 
the vast combinatoric space of possible programs. Once a particu-
lar program is written, this space of other possibilities is no longer 
of interest. In fact it is in the way. It is part of the compiler’s task 
to wash away as many traces of that original flexibility as possible, 
in order to produce a sleeker, more efficient machine. 

Another numerical point will help drive the point home. Pro-
grams to control high-end networked printers are several million 
lines long. Operating systems are 100s of millions of lines of 
code.14 It is not unreasonable to suppose that such programs con-
tain a new identifier every four or five lines. That suggests that 

                                                             
14Microsoft Windows NT 5.0, the release of which was thought to be im-
minent at the point when this paper was first written, was rumoured to 
contain 35 million lines of code. (It was eventually released on February 
17, 2000.) 
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the number of identifiers used in a printer control program can 
approach a million, and that Windows NT will contain as many as 
7 million identifiers. Suppose a person’s conceptual repertoire is 
approximately the same size as their linguistic vocabulary. Edu-
cated people typically know something like 40,000 to 80,000 
words. Suppose we therefore assume that people have on the or-
der of 100,000 concepts. Is it possible—as seems to be entailed by 
the symbolists’ position—that a Xerox printer has a conceptual 
repertoire ten times larger than you do, or a Microsoft operating 
system, seventy times larger? 

I think not.15 

 4 Processes 
A way to understand 
what is going on is 
given in figure 1. The 
box at the top left is (a 
label for!) the program: 
the passive textual en-
tity selected out of the 
vast space of possible 
programs implicitly 
provided by the back-
ground programming 
language. The cloud at 
the middle right is in-
tended to signify the 
process or behavior 
that results from running the program.16 The scene at the bottom 
is a picture of the program’s task domain or subject matter. For 
example in this case the process might be an architectural system 

                                                             
15Indeed, no program—at least none we currently know how to build—
could possibly cope with millions of differently-signifying identifiers, if all 
those identifiers could be mixed and matched, in a compositional way, as 
envisaged in the symbolists' imagination. 

16Whether the cloud represents a single run (execution) of the process, or a 
more general abstract type, of which individual runs are instances, is an 
orthogonal issue—important in general, but immaterial to the current ar-
gument. 

 
 

Figure 1 — Program and Process 
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dealing with house design. 
Given these three entities, two relations are most important: 

that labelled a, from program to process, and that labelled b, 
from resulting process to task domain. Moreover, what is perhaps 
the single most confusing fact in cognitive science’s use of compu-
tation is this: the word ‘semantics’ is used by different people for both 
of these relations. In computer science, the phrase “the semantics 
of a program” refers to the program-behavior (process) relation a, 
whereas the relation considered semantic in the philosophy of 
mind is the process-world relation b. For discussion, in order not 
to confuse them, I will refer to a as program semantics, and to b 
as process semantics. It is essential to realize that they are not 
the same.17 Not only do they relate different things, but they are 
subject to vastly different constraints—and are of distinct meta-
physical kinds. 

All sorts of confusion can be cleared up with just this one distinc-
tion. But a cautionary note is needed first. Given that processes 
and behaviours are computer science’s primary subject matter, 
you might think that there would be a standard way to describe 
them. Curiously enough, however, that is not so. Rather, profes-
sional practice instead models processes in various ways: 

… In the final version it will probably be helpful to devote more than a sentence 
to each of these; perhaps even worth constructing a target program P that does 
something (a bit more complex than the printer example above), and then actu-
ally presenting the five different models of the processes that result. … 

1. The most common way to talk about processes is to model 
them with (mathematical) functions mapping their inputs 
onto their outputs. 

                                                             
17Many years ago, at Stanford's Center for the Study of Language and In-
formation (CLSI), I, with a background in AI and philosophy of mind, 
tried in vain to communicate about semantics with Gordon Plotkin, one 
of the most preëminent theoretical semanticists in all of computer science. 
Finally, a glimmer of genuine communication transpired when I came to 
understand the picture sketched in figure 1, and realised that we were us-
ing the term 'semantics' differently. "What I am studying," I said, trying to 
put it in his language, "is the semantics of the semantics of programs." 

Plotkin smiled. 
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2. A second way is to treat the computer as a state machine, 
and then to view the process or behaviour as a sequence of 
state changes. 

3. A third is to have the process produce a linear record of 
everything that it does (called a “dribble” or “log” file), and 
to model the process in its terms. 

4. A fourth (called “operational semantics”) is to model the 
process in terms of a different program in a different lan-
guage that would, if run, generate the same behavior as the 
original. 

5. A fifth and particularly important one—called denota-
tional semantics—models the concrete activity that the 
program actually produces (i.e., the behaviour Q) with 
various abstract mathematical structures (such as lattices), 
rather in the way that physicists model concrete reality 
with similarly abstract mathematical structures (tensors, 
vector fields, etc.). 

Especially because of the common use of mathematical models in 
several of these approaches (#s 1 and 5 especially, though they can 
all be mathematized), outsiders are sometimes tempted to think 
that computer science’s notion of semantics is similar or equiva-
lent to that used in logic and model theory. But that assumption 
is misleading. Although the relation is studied in a familiar way, 
what relation it is that is so studied may differ substantially from 
what is supposed. 

 5 Discussion 
Once these modelling issues are sorted out, we can use these basic 
distinctions they are defined in terms of to make the following 
points: 

… This section has not really been written; the six points identified below 
should be amplified enough to communicate the essential moral, in each case, to 
someone who does not “already know it,” as it were—in particular, enough de-
tail both to motivate and to convey it to a philosophical reader, even one without 
computational experience … 
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1. (Discussed above) It is programs, not processes, that, in 
standard computational practice, are symbolic (composi-
tional, productive, etc.). 

2. It is again programs, not processes, that computer scientists 
take to be syntactic. It strikes the ear of a computer scien-
tist oddly to say that a process or behavior is syntactic. But 
when Fodor talks about the language of thought, and ar-
gues that thinking is formal, what he means, of course, is 
that human thought processes are syntactic. 

3. Searle’s analogy of the mind to a program is misleading.18 
What is analogous to mind, if anything (i.e., if the compu-
tational theory of mind is true) is process. 

4. Not only is there no reason to suppose, but in fact I know 
of no one who ever has proposed, that there should be a 
program for the human mind, in the sense we are using 
here: a syntactic, static entity, which specifies, out of a vast 
combinatoric realm of possibilities provided for by the 
programming language, the one particular architecture 
that the mind in fact instantiates. Perhaps cognitive scien-
tists will ultimately devise such a program. But it seems 
relatively unimaginable that evolution constructed us by 
writing one.19 

5. For simple engineering reasons, the program-process rela-
tion (a in the figure) must be constrained to being effective 
(how else would the program run?). There is no reason to 
suppose that the process-world relation b need be effec-
tive, however—unless for some reason one were meta-
physically committed to such a world view. 

6. It is because computational semanticists study the pro-
gram-process relation a, not the process-world relation b, 
that theoretical computer science makes such heavy use of 

                                                             
18Searle, John, Minds, Brains, and Science, Cambridge: Harvard University 
Press (1984). 

19Of course one could call DNA a programming language in this 
sense…«talk about how it is subject to some of the same efficacy con-
straints» 



BL · 16 Indiscrete Affairs 

intuitionistic logic (type theory, Girard’s linear logic, etc.) 
and constructive mathematics. 

 6 Conclusion 

… Once §5 is properly written, this § will deserve a rewrite … 

What, in sum, can we say about the cognitive case? Two things, 
one negative, one positive. On the negative side, it must be recog-
nized that it is a mistake to assume that modern commercial pro-
gramming gives rise to processes that satisfy anything like the de-
fining characteristics of the “symbolic” paradigm. Perhaps some-
one could argue that most—even all—of present-day computa-
tional processes are symbolic on some much more generalized no-
tion of symbol.20 But the more focused moral remains: the vast 
majority of extant computer systems are not symbolic in the sense 
of “symbol” that figures in the “symbolic vs. connectionist” or 
“computational vs. dynamic” debates. 

What are the computer systems we use, then? Are they 
connectionist? No, of course not. Rather—this is the positive 
moral—they spread out across a extraordinarily wide space of 
possibilities. With respect to the full range of computational pos-
sibility, moreover, present practice may not amount to much. 
Computation is still in its infancy; we have presumably explored 
only a tiny subset of the space—perhaps not even a very theoreti-
cally interesting subset, at that. But this much we can know, al-
ready; the space that has already been explored is far wider than 
debates in the cognitive sciences have so far recognized. 

                                                             
20If it were enough, in order to be a symbol, to be discrete and to carry in-
formation, then (at least arguably) most modern computational processes 
would count as symbolic. Or at least that would be true if computation 
were discrete—another myth, I believe (see chapter ■■). But the symbolic 
vs. connectionist and/or dynamicist debate is not simply a debate about 
discrete vs. continuous systems. 


